Stent-assisted Embolization of Internal Carotid Artery Aneurysms

Background. Endovascular embolization of wide neck aneurysms often results in incomplete occlusion or aneurysm recurrence. The purpose of this study is to assess the efficacy and safety of stent-assisted embolization of wide neck aneurysms of the internal carotid artery (ICA).

Methods. A series of 10 patients with ICA aneurysms attempted treatment by stent-assisted Guglielmi detachable coil (GDC) embolization (n = 9) or by stent alone (n = 1). There were 3 men and 7 women ranging in age from 21 to 78 years, with a mean of 51 years. The indications of stenting were wide neck aneurysms (n = 9) and herniation of detached coils from aneurysmal sac into parent artery (n = 1).

Results. Endovascular stent placement was technically successful in 8 cases. In one case with a cervical big ICA aneurysm, a stent was placed across the neck of an aneurysm with out detachment of embolic material into the aneurysmal sac. The initial control angiogram revealed residual aneurysm; however, complete obliteration of aneurysmal sac was achieved as observed on angiograms in 8 months. Six cases of wide neck aneurysms were successfully treated by stent-assisted GDC embolization. One case had prolapse of coil loops into parent artery after coils detached; the coil loops were successfully pushed back to an aneurysm after stent placement. Two patients had difficulties navigating the stents across the aneurysm necks because of tortuous parent arteries; in one of them, the stent partially covered the neck of an aneurysm, which made the success of subsequent GDC embolization; in the other, advancement of the stent to the targeted site was abortive, and the aneurysm was even further loose packing. No significant procedure-related complication was found. One patient had asymptomatic dissection of the parent artery after stent placement. One patient had a transient ischemic attack and returned to normal baseline neurological conditions later. Clinical follow-up for these patients was 0.5 to 36 months, with a mean of 14 months.

Conclusions. Stent-assisted embolization is a treatment of choice for wide neck aneurysms or for patient with herniation of coil loops to parent artery at the coil detached. It was proven both safe and effective over a relatively long follow-up.
Due to the increasing in her ent complexity, these meth ods are not al ways suc cess ful or risk-free. The use of stent-assisted embolization (SAE) for the treat ment of ex per i men tal wide neck aneurysms in ca nine and swine was first re ported in 1994 by Szikora et al. 6 and Turjman et al. 7 One year later, Massound et al. 8 dem on -
strated the va lid ity of this tech nique for the treat ment of ex per i men tal fusiform aneurysms in swine. How ever, the clin i cal use of this tech nique was re stricted by the dif -
fi culty as so ci ated with the endovascular nav i ga tion of stents to the ce re bral vas culature. The pur pose of this study is to pres ent our ex pe ri ence of man ag ing 10 pa -
tients with in ter nal ca rotid ar tery (ICA) aneurysms by the use of stent and to as sess the role, ef fi cacy and safety of SAE for pa tients with wide neck ICA aneurysms.

METHODS

From 1996 to 2002, we treated 106 ce re bral aneu -rysms by GDC embolizations. Ten of them were dif fi cult to oc clude by the two- or three-dimension GDC be cause of re peated pro trud ing of coils into the lu men of the par ent arteries. Embolization of these aneurysms was at -
tempted by the stent alone (n = 1) or by SAE (n = 8) in combination with the use of GDC. In 1 case, the stent was ap plied for re con struc tion of patency of the par ent ar tery be cause of pro lapse of coil loops into the lu men of the par ent ar tery. In di vid ual data of pa tients are sum ma-
rized in Ta ble 1.

There were 3 men and 7 women aged from 21 to 78
years with a mean age of 51 years. The in di ca tions for stenting in cluded 9 pa tients with wide neck aneurysms at the jun ction of ICA- pos ter ior com mu ni cat ing ar tery (PCoA, n = 4), cav ern ous ICA (n = 3), ter mi na tion of the ICA (n = 1), cer vi cal ICA (n = 1) and one pa tient with herniation coil loops from aneurysmal sac to par ent ar -
ergy after coils de tached into ICA-PCoA an eu rysm.

With the pa tients un der gen er al an es the sia, the fem o -
ral ar ter ies were catheterized by means of a percutaneous tech nique. Angiogra phies of bi lat er al ca rotid and verte -
bras ilar ar ter ies were as sessed for the size, neck and
neck to dome ra tio of aneurysms. All but 1 pa tients met the cri te ria of wide neck an eu rysm in cluding neck width
more than 4 mm (n = 7) or un fa vor able neck to dome ra -
tio of greater than 1 (n = 2). The cal i bers of nearby par ent ar ter ies were cal cu lated as the ref er ence of stent se lec -

<table>
<thead>
<tr>
<th>Case</th>
<th>Sex/Age</th>
<th>Aneurysm location</th>
<th>Indication for treatment</th>
<th>Embolic agents</th>
<th>Complications</th>
<th>Outcome</th>
<th>Follow-up (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F/58</td>
<td>Termination of ICA</td>
<td>SAH</td>
<td>Stent, GDC</td>
<td>None</td>
<td>Fair</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>F/72</td>
<td>ICA-PCoA junction</td>
<td>SAH</td>
<td>Stent, GDC</td>
<td>TIA</td>
<td>Good</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>F/78</td>
<td>ICA-PCoA junction</td>
<td>Decrease visual acuity</td>
<td>Stent, GDC</td>
<td>None</td>
<td>Good</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>M/25</td>
<td>Cavernous ICA</td>
<td>Paresis</td>
<td>Stent, GDC</td>
<td>Arterial dissection</td>
<td>Good</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>F/58</td>
<td>Cavernous ICA</td>
<td>Paresis and TIAs</td>
<td>Stent, GDC</td>
<td>None</td>
<td>Good</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>M/31</td>
<td>ICA-PCoA junction</td>
<td>SAH</td>
<td>Stent, GDC</td>
<td>None</td>
<td>Died</td>
<td>0.5</td>
</tr>
<tr>
<td>7</td>
<td>M/21</td>
<td>Cavernous ICA</td>
<td>Paresis</td>
<td>Stent, GDC</td>
<td>None</td>
<td>Good</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>F/35</td>
<td>Cervical ICA</td>
<td>TIAs, pulsatile mass</td>
<td>Stent</td>
<td>None</td>
<td>Good</td>
<td>36</td>
</tr>
<tr>
<td>9</td>
<td>F/57</td>
<td>ICA-PCoA junction</td>
<td>SAH, herniation of coil loops</td>
<td>Stent, GDC</td>
<td>None</td>
<td>Good</td>
<td>15</td>
</tr>
<tr>
<td>10</td>
<td>F/76</td>
<td>ICA-PCoA junction</td>
<td>SAH</td>
<td>GDC</td>
<td>None</td>
<td>Good</td>
<td>12</td>
</tr>
</tbody>
</table>

ICA = Internal carotid artery; GDC = Guglielmi detachable coil; PCoA = posterior communicating artery; TIA = transient ischemic attack; SAH = subarachnoid hemorrhage.
A 58-year-old female presented with subarachnoid hemorrhage. (A) Initial carotid angiogram revealed a wide neck aneurysm near termination of right ICA. Spontaneous occlusion of branch of right middle cerebral artery (MCA) was found incidentally (black arrow); (B) Stent was advanced across an aneurysm neck (black arrowheads), followed by GDC embolization of an aneurysm; finally the stent was deployed; (C) Control angiograms showed almost total occlusion of an aneurysm (black arrowhead) without compromise of the ICA flow; recanalization of occlusive branch of right MCA was achieved after thrombolytic treatment (black arrow). Patient had permanent neurological deficits.

A 78-year-old female complained of decreased visual acuity. (A) Right carotid angiogram demonstrated a wide neck big aneurysm at the supraclinoid region; (B) Intracranial stent was navigated vigorously but just partially covered and narrowed the neck (white arrowheads), which facilitated GDC embolization subsequently. (C) Control angiograms revealed subtotal occlusion of an aneurysm with preservation of the ICA flow. Patient had recurrent aneurysm at 16 months follow-up angiograms because of coils compaction; she received a second GDC embolization with almost total occlusion of the recurrent aneurysm.

A stent was placed across the aneurysmal neck, but there was no deposition of embolic material into aneurysmal sac. For SAE of intracranial aneurysms in the other 9 patients, the stent delivery catheter was advanced through a 300 cm, 0.014 inch length exchange guidewire and the appropriate coronary stent was tried to navigate across the neck of the aneurysms (Fig. 1). Before the stent was deployed, a microcatheter was placed into aneurysmal sac through the neck of aneurysm, and the appropriate size and number of GDCs were subsequently
placed in the aneurysmal sacs. Following GDC embolization, the stent was deployed. In 2 aged patients, we had difficulty to navigate the stents across the aneurysmal neck because of the tortuous ICA. One of them had the stent partially covering the neck of the aneurysm (Fig. 2), while the other one, failed in navigating the stent to the targeted site, even though GDC embolizations were preceded. In one patient, stent was not intended to use, however, after 3 GDCs were detached into the aneurysm, herniation coil loops to the parent artery were found (Fig. 3). Because of potential risk of thromboembolic event, a stent was deployed across the neck of an aneurysm for reconstruction of patency of the parent artery. After completion of the procedure, a control angiogram of the ICA was performed in each patient to evaluate the treatment result and to exclude a thromboembolic branch occlusion. Clinical or angiographic follow-up for these patients was 0.5 to 36 months, with a mean of 14 months.

RESULTS

The results and follow-up findings are listed in Table 1. In 1 case with a cervical big ICA aneurysm, a stent was placed across the neck of aneurysm without deposition of embolic material into the aneurysmal sac. The initial control angiogram revealed residual aneurysm; however, complete obliteration of aneurysmal sac was achieved on follow-up angiograms in 8 months. For 8 patients with SAE of intracranial wide neck aneurysms in combination with GDC, technical success was achieved in 6 (Fig. 1); 2 patients had difficulties to navigate the stents across the aneurysmal neck because of tortuous parent arteries as mentioned before. One of them, had the stent partially covering the neck of an aneurysm to reduce the size of neck from 7 mm to 3 mm, which made the success of subsequent GDC embolization (Fig. 2). The other one, failed to advance the stent to the target site, the aneurysm was eventually loose packing. In 1 patient with prolapse of detached coil loops into parent artery, the coil loops were successfully pushed back to the aneurysmal sac with preservation of the ICA flow (Fig. 3). One patient had spontaneous occlusion of one branch of middle cerebral artery before embolization. Recanalization was achieved by intra-arterial thrombolysis (Fig. 1A, C); however, the patient had perma nent neurological deficits. Asymptomatic stent-related minor dissection of the ICA was found in one patient, and spontaneous healing was documented on 6-month angiography. One patient experienced transient ischemic attacks and returned to baseline neurological conditions.

Fig. 3. A 57-year-old female presented with subarachnoid hemorrhage. (A) Right carotid angiogram documented a small aneurysm at the junction of the ICA-PcoA (black arrow head). (B) GDC embolization was undertaken, unfortunately, prolapse of detached coil loops into ICA (white arrow) was depicted during the procedure; (C) A intracranial stent (white arrow head) was advanced across the aneurysmal neck and protruding coil loops were push back to the aneurysm; (D) Control angiograms revealed total occlusion of an aneurysm with preservation of the ICA flow.
later. One patient died after the procedure 2 weeks later, from the presumed consequence of subarachnoid hemorrhage. There was no proce-dure-related permanent neurologic deficit or mortality. Coil compaction with recurrent aneurysm was documented in 1 patient in 16 month follow-up, who received secondary embolization with total obliteration of aneurysmal sac. The clinical and/or angiographic follow-up was 0.5 month to 36 months with a mean of 14 months.

DISCUSSION

There have been increasing reports in literature on intravascular stenting in the treatment of neurovascular disease, for example, the occlusive and aneurysmal diseases in the extracranial and intracranial carotid, vertebral, and basilar arteries. However, aneurysms with wide neck and with unfavorable ratio of neck diameter to dome continue to cast significant technical challenges for GDC embolization. Endovascular treatment of those wide neck aneurysms can lead to incomplete occlusion and aneurysm recurrence. Attempts at complete obliteration may increase the risks of coil protrusion, embolic complications, or thrombo sis of the parent artery. At present, the SAE technique is considered one of the valuable techniques to treat those wide neck or fusiform aneurysms.

The standard SAE consists of the placement of a stent in the parent artery across the aneurysm neck. A microcatheter is then navigated through the stent interstices into the aneurysmal lumen, and coils embolization is performed. The stent serves as a mechanical scaffold for the placement of intra-aneurysmal coils, preventing their prolap-sion into the parent artery and allowing a denser coils packing, which may reduce the likelihood of future coil compaction. The stent also provides a stent to the aneurysm lumen through the stent interstices, promoting intra-aneurysm stasis and thrombus formation. In our series, we had 1 patient with a giant ICA aneurysm. Since there was no immediate risk of stroke after medication, the patient was treated by this alone. Progres-sive thrombus formation was observed, and complete obliteration was observed in 8 months after stent placement.

The choice of stent depends on the location of an aneurysm, parent vessel diameter, and aneurysm neck size. The stent may be success fully used for extracranial aneurysms such as in Case 8 of our series, whereas intracranial applications require the use of a more flexible coronary stent. Current available stents may be too stiff to navigate to intracranial arteries; in addition, stiffs stents have the potential risk of kinking and/or dissecting tortuous vessels. In our series, 1 patient had asymptomatic dissection and spontaneous healing was found in 6 months. For those patients with tortuous parent arteries, the availability of more flexible and pliable devices may alleviate this problem in the future.

By far, effective placement of the stent with complete crossing over the aneurysm orifice is pre-sumed as a key to successful treatment of wide neck aneurysms. Nevertheless, complete covering of the aneurysm neck does not mean technical failure. On the other hand, narrowing the neck by the use of stent to partially cover the aneurysm neck might facilitate GDC embolization subsequently. Our experience in 1 case has highlighted that GDC embolization can benefit from advancing the stent partially across the wide neck of the aneurysm.

A main drawback of the use of the standard SAE with early deployment of the stent before GDC embolization is poor intra-procedural fluoroscopic visualization of coils in relation to the parent artery, particularly when treating fusiform aneurysms. Coil loop protrusion through the stent in stenoses back into the parent artery may be difficult to detect because of superimposition of coils and stent meshwork. The use of an inflated balloon in the stent during coil embolization has been suggested as a possible solution by some authors, but this might increase thromboembolic event. Additionally, the microcatheter is advanced to the stent during GDC embolization may make it difficult to place microcatheter into aneurysmal sac again through deployed stent in stenoses. In our series, we have modified this standard SAE in order to solve these problems by late deployment of stent (Fig. 1B) in the capacity of early deployment as soon as it was advanced across aneurysm.
neck. The stent was left as a reference of parent artery lumen. Next, we placed a microcatheter into the aneurysm sac followed by GDC embolization, then the stent was finally deployed. The major advantage of this modified SAE is clear visualization of lumen of the parent artery and the microcatheter through wide neck aneurysm without stent mesh.

In this series, we also used stent to treat 1 patient with protruding coil loops occurring after coil detachment. In this case, snare retrieval devices can be used, but it is also technically challenging to remove a significant coil mass, as well as potentially hazardous, with the significant risk of embolic and/or occlusive complications or vessel perforation. In our experience, stent is a valuable adjunct in treating inadvertent parent vessel coil prolapse and subsequent embolic complication.

Our experiences have highlighted technical aspects of this procedure that should help the neuroradiologist achieve optimal results. However, several limitations of the SAE approach to cerebral aneurysms exist. The first is the current design of the stent and stent delivery catheter, which restricts the use of SAE predominantly to side wall aneurysms rather than bifurcation aneurysms, such as those encountered at the Will’s circle. The second is that stents are known to induce intimal hyperplasia. Excessive neointimal proliferation after stent placement can result in hemodynamically significant stenosis, especially of the smaller intracranial branches. Concerns also exist that occlusion of the ostia of small side branches and perforating arteries by stent placement may result in ischemia or infarction in the territories of these vessels. This is the most relevant for intracranial aneurysms, in which occlusion of small but important perforating vessels may potentially result in significant morbidity. Because of the high porosity of the stent used, lateral carotid branches, which approximate intracranial perforating vessels relative to their diameter and angle of origin, remain patent if less than 50% of the ostium diameter is covered by the stent struts.18

In conclusion, we report our preliminary experience with stents used alone or in combination with GDC placement for the treatment of aneurysms originating from different ICA segments and for parent tient with prolapse of detached coils during embolization. Our account demonstrates that modified SAE is both feasible and safe with the use of flexible intravascular stents. Thus far, we have been able to place coils satisfactorily in complex aneurysms that we would have been unable to treat without stent placement. Although the long-term effects of stents are currently unknown, we believe that stent for cerebral aneurysms holds great practical promise, especially in view of the potential for device improvements.

REFERENCES

