The anatomy of the palmar cutaneous branch of median nerve (PCN) at the wrist has been documented by many authors. Usually the median nerve passes below the flexor retinaculum and gives off the PCN, which distributes to the skin over the lateral part of the palm. In patients with carpal tunnel syndrome, the median nerve under the flexor retinaculum is tightly packed with the long flexor tendons of the finger with their surrounding synovial sheaths. The decompression of median nerve by sectioning the transverse carpal ligament (flexor retinaculum) is well accepted as the treatment of choice for patients with carpal tunnel syndrome. In 1972, Carroll and Green called attention to the possibility of PCN damage as a source of painful dysesthesia following surgery for carpal tunnel syndrome.

Taleisnik recommended a curved longitudinal incision located on the ulnar side of the long axis of the ring-finger ray. Hobbs concluded that the transverse carpal ligament should be located on the ulnar side of the long axis of the middle finger to prevent damage to the PCN. These studies have influenced surgeons to shift their incisions more toward the ulna in the interthenar area.

Neuroma of the PCN is a common complication of anterior wrist surgery after carpal tunnel decompression. To avoid injury to the PCN, a comprehensive evaluation of its distribution in the wrist region is essential. To understand this, we analyzed in detail the anatomical distribution of the PCN in the Chinese adults.

Original Article

The Anatomical Variations of the Palmar Cutaneous Branch of the Median Nerve in Chinese Adults

Background. In a detailed analysis of the palmar cutaneous branch of median nerve (PCN) in the Chinese adults, we tried to evaluate its anatomic variation and clinical significance.

Methods. Observations were described in all the 60 specimens of the PCN at the wrist.

Results. The PCN was present in all 60 specimens and in most cases (88.3%) it originated from the radial side of the median nerve and the average length from the palmaris longus was 1.4cm; ulnarward (11.7%); only 5 cases (4.1%) were located at ulnar side and extended beyond the palmaris longus, the average distance being 0.3cm. Its mean point of origin was 3.2cm proximal to the distal wrist crease and the variations of the PCN in Lanz classification were: group 0 (31.7%), group 1 (40%), group 2 (15%), group 3 (0%) and group 4 (13.3%).

Conclusions. Longitudinal incision located 1cm on the ulnar side from palmaris longus could avoid injury to the PCN during decompression for carpal tunnel syndrome.

Key Words
carpal tunnel syndrome;
Lanz classification;
palmar cutaneous branch of median nerve;
palmaris longus
This study provides not only important information for decreasing PCN injury but also racial differences in the PCN distribution.

METHODS

The series consisted of 120 PCNs without wrist surgery from specimens at the gross anatomy laboratories of the National Defense Medical Center, Taipei, Taiwan. The specimens were from 60 Chinese adults cadavers (48 male, 12 female). The median nerve was identified between the tendon of flexor carpi radialis and palmaris longus (PL) and then was picked up. Each PCN was identified using blunt dissection, and was traced proximally to its intraneural origin from the median nerve. Each PCN was then carefully dissected distally, dividing the skin overlying its course and tracing individual branches radially, and towards the ulna until its terminations in the under surface of the skin. We used the Lanz classification to group the variations encountered. In addition, measurements of the following distances were also performed: a) the distance between the PCN radially to palmaris longus, b) the distance between the origin of the PCN to the distal palmar crease, and c) the distance between the ulnar side of the PCN to the palmaris longus (Fig. 1).

Table 1. Details of the cadaveric limbs dissected

<table>
<thead>
<tr>
<th></th>
<th>Average</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin proximal to distal wrist crease</td>
<td>3.2 cm</td>
<td>1.2 - 6.5 cm</td>
</tr>
<tr>
<td>Length of radial branches from PL</td>
<td>1.4 cm</td>
<td>0.6 - 3.7 cm</td>
</tr>
<tr>
<td>Length of ulnar branches from PL</td>
<td>0.3 cm</td>
<td>0 - 0.8 cm</td>
</tr>
</tbody>
</table>

PL = palmaris longus.

Table 2. Classification of the variation of the median nerve related to the source of the anatomical findings (n = 120)

<table>
<thead>
<tr>
<th>Group</th>
<th>n</th>
<th>%</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>38 (12)</td>
<td>31.7 (48)</td>
<td>0.118</td>
</tr>
<tr>
<td>1A</td>
<td>30 (12)</td>
<td>25.0 (12)</td>
<td>0.158</td>
</tr>
<tr>
<td>1B</td>
<td>4 (12)</td>
<td>3.3 (12)</td>
<td>0.099</td>
</tr>
<tr>
<td>1C</td>
<td>14 (1)</td>
<td>11.7 (1)</td>
<td>0.469</td>
</tr>
<tr>
<td>1D</td>
<td>0 (0)</td>
<td>0.0 (0)</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>18 (5)</td>
<td>15.0 (20)</td>
<td>—</td>
</tr>
<tr>
<td>3A</td>
<td>0 (0)</td>
<td>0.0 (0)</td>
<td>0.551</td>
</tr>
<tr>
<td>3B</td>
<td>0 (0)</td>
<td>0.0 (0)</td>
<td>—</td>
</tr>
<tr>
<td>3C</td>
<td>0 (0)</td>
<td>0.0 (0)</td>
<td>—</td>
</tr>
<tr>
<td>4A</td>
<td>10 (1)</td>
<td>8.3 (4)</td>
<td>0.690</td>
</tr>
<tr>
<td>4B</td>
<td>6 (0)</td>
<td>5.0 (0)</td>
<td>0.590</td>
</tr>
<tr>
<td>Total</td>
<td>120 (25)</td>
<td>NS</td>
<td></td>
</tr>
</tbody>
</table>

For statistical analysis, Chi-squared test was used to compare our results with those of Stančič et al.7

RESULTS

The PCNs were present in all 60 cadavers. They were located under the tendons of PL and flexor carpi radialis. Most of the PCNs (106 specimens, 88.3%) originated from radial side of the median nerve. The average distance between the PCN and the PL at the level of distal wrist crease was 1.4 cm with a maximum of 3.7 cm. A total of 14 specimens (11.7%) of the PCNs originated on the ulnar side, but only 5 specimens (4.1%) extended beyond the PL. The average distance between the PCN and the PL at the level of distal wrist crease was 0.3 cm (range, 0 - 0.8 cm). The mean distance of the origin of the PCN to the distal wrist crease was 3.2 cm (range, 1.2 - 6.5 cm) (Table 1).

The variations of the PCN were classified as follows (Table 2 and Fig. 2).
Group 0: In 38 specimens (31.7%), the PCNs branched above the flexor retinaculum.

Group 1: In 48 specimens (40%), the PCNs branched under the flexor retinaculum.
 Subgroup 1A, subligamentous, (25%); Subgroup 1B, transligamentous, (3.3%);
 Subgroup 1C, on the ulnar side, (11.7%); Subgroup 1D, supraligamentous, (0%).

Group 2: In 18 specimens (15%), distal accessory PCN branches of the median nerve to the carpal tunnel.

Group 3: No specimens in the high division of the median nerve.

Group 4: In 16 specimens (13.3%), proximal accessory PCN to the carpal tunnel.
 Subgroup 4A, directly in the thenar muscle, (8.3%); subgroup 4B, joining another branch, (5%).

DISCUSSION

The PCN which is the last branch of the median nerve given off in the forearm, was present in all dissected specimens. Its origin was on average 3.2 cm proximal to the distal wrist crease, which differed from the results of Bezerra (4.6 cm)\(^8\) and Hobbs (8.4 cm).\(^5\) The shortest distance of the origin proximal to the wrist crease was
1.2 cm, which did not correspond to the results of Bezerra or Hobbs. The longest distance was 6.5 cm, which was similar to that of Bezerra (6.68 cm). However, they differed from the results of Hobbs (21.5 cm) due to high division of the PCN.

The PCN often originated on the radial side (88.3%) of the median nerve and the average distance between radial branches and palmaris longus was 1.4 cm (range, 0.6 to 3.7 cm), which is similar to the results of Hobbs (1.6 cm to the long axis of middle finger). Only in 14 specimens (11.7%) did the PCN originate on the ulnar side. The average distance between radial branches and palmaris longus was 0.3 cm, which was not different from the results of Hobbs (0.4 cm to the long axis of middle finger). In no specimen did a branch pass more than 1 cm. Therefore, a longitudinal incision placed 1 cm on the ulnar side to the PL can prevent damage to the nerve.

There were no statistical differences in the comparison of variations of PCN in the Chinese adults with the results by Stančić et al. (p = 0.235). In the Chinese subjects, the most common was group 1 (40%). Group 0 (48%) was the most common seen in a study by Stančić et al. As pointed out by Spinner, the transligamentous course of the PCN is of clinical importance in that the nerve may be compressed within the ligament. In our study, the subjects with transligament branches (1B) consisted of 3.3%, which was less than that (12%) reported by Stančić et al.

In our study, the distal accessory PCN appeared in 15% of the specimens (group 2), which was less than that reported by Stančić et al (20%). The proximal accessory PCN appeared in 13.3% of the specimens (group 4), which was more than that reported by Stančić et al (4%). Therefore, we emphasize the need for more precise surgical exploration. Incomplete decompression is a common complication occurring in up to 20% of the operations for carpal tunnel syndrome. This can be prevented by accurate dissection.

In 1972, Carroll and Green discussed the significance of anatomical details of the PCN in the wrist region and highlighted the problem of injury to this nerve, which could lead to postoperative symptoms ranging from mild annoyance to major hand disability. In 1973, Taleisnik dissected 12 cadaver hands and defined the origins, courses, and branches of the PCN. Taleisnik recommended that a curved longitudinal incision be located on the ulnar side of the ring-finger ray and extend through the skin, subcutaneous tissue and transverse carpal ligament, but we found that the ulnar nerve might be injured by Taleisnik’s method (unpublished finding). MacDonald et al. found a 12% complication rate in 186 operative cases of carpal tunnel released using the methods of Taleisnik. Hobbs dissected 25 fresh adult cadaver hands and suggested that all branches of the PCN be avoided during carpal tunnel decompression if the skin incision is made 1 cm ulnar to the axis of the third metacarpal. In this study, we made incision using Hobb’s method which could injure the PCN. The tendon of the palmaris longus is the most prominent object on the ventral surface of the flexed forearm. It can be easily localized for the operative landmark during wrist surgery. In addition, in no specimen did a branch of the PCN extend greater than 1 cm medial to the PL in our dissections. Therefore, we suggest that longitudinal incision be made 1 cm medial to the palmaris longus (Fig. 3). In our finding, the palmaris longus tendon was absent in 11 (9.1%) specimens. If the patient had no PL, we suggested the Dr. Taleisnk’s method to make a curved longitudinal incision located on the ulnar side of the axis of the ring–finger ray to identify the ulnar nerve.
It is important to bear in mind that the longitudinal incision 1cm medial to the PL will obtain great benefits for the PL during carpal tunnel syndrome decompression.

REFERENCES