Chronic Myeloid Leukemia After Treatment with 131I for Thyroid Carcinoma

Kang-Ling Wang, Liang-Yu Lin1, Po-Min Chen2,3, Hong-Da Lin1,3,*

Division of Endocrinology and Metabolism, Armed Forces Tao-Yuan General Hospital, 1Division of Endocrinology and Metabolism, and 2Division of Medical Oncology, Department of Medicine, Taipei Veterans General Hospital, and 3National Yang-Ming University School of Medicine, Taipei, Taiwan, R.O.C.

A 27-year-old male developed Philadelphia chromosome-positive chronic myeloid leukemia (CML) 13 years after a first dose of radiiodine (131I) therapy for papillary thyroid carcinoma. He had received a cumulative 131I dose of 670 mCi, in 8 divided doses over 8 years, up to April 1998, for ablation of 131I avid tissues over the anterior neck region. The leukemogenic potential of radioactive iodine has been pointed out by many authors, but most reported cases have been acute leukemias. A literature review disclosed only 9 cases similar to ours. At present, there is no evidence to prove whether the development of CML after thyroid carcinoma represents a treatment-induced complication, a coincidence, or an increased susceptibility to secondary malignancies due to the malignant process itself. [J Chin Med Assoc 2005;68(5):230–233]

Key Words: chronic myeloid leukemia, radiiodine therapy, thyroid cancer

Introduction

Radiiodine (131I) has been the treatment of choice for toxic nodular goiter, Graves’ disease and metastatic thyroid cancer for over half a century. We have used 131I whole body scans and serum thyroglobulin measurements to follow patients with differentiated thyroid cancer to detect local recurrences or distant metastases. If 131I ablation therapy for thyroid remnants is performed after total thyroidectomy, the sensitivity and specificity of 131I whole body scans and serum thyroglobulin measurements will increase. Further, 131I treatment for differentiated thyroid carcinoma with lung and bone metastases prolongs survival and improves quality of life. However, ionizing radiation is believed to be leukemogenic, and although uncommon, leukemia after exposure to 131I therapy for thyroid cancer has been reported. Many cases were of acute myeloid leukemia, usually occurring after cumulative dosages of more than 800 mCi, in patients older than 50 years, and with intervals of less than 12 months between 131I therapy. Only 9 cases of chronic myeloid leukemia (CML) after 131I therapy for thyroid cancer have been reported in the English medical literature. Here, we describe an additional case of CML, which was noted 13 years after the first dose of 131I treatment for papillary thyroid cancer.

Case Report

In November 1987, a 12-year-old male underwent total thyroidectomy and cervical lymph node resection for papillary carcinoma of the right thyroid lobe with lymph node metastasis. In July 1990, October 1991, and August 1992, he received 131I radiotherapy (doses of 30, 30, and 60 mCi, respectively) for avid uptake of 131I over the anterior neck region on 131I whole body scan. Lung metastasis was suspected on the post-131I therapy scan in August 1992, but a repeat scan in March 1993 found complete resolution of the pulmonary lesions. Later, because of persistent...
accumulation of 131I in the thyroid bed on subsequent scans, he took 131I in doses of 100, 100, 100, and 150 mCi, respectively, in July 1993, September 1994, November 1995, and April 1998. After the last 150 mCi of ablation therapy, a follow-up scan still showed increased 131I uptake in the thyroid bed and right pulmonary hilum (Figure 1). However, no more 131I was given. The patient was maintained on suppressive, exogenous thyroid hormone therapy, with the level of thyroid stimulating hormone maintained at 0.1–0.4 µIU/mL. The total dosage of 131I was 670 mCi, administered in 8 doses from July 1990 to April 1998. The time intervals between 131I doses ranged from 10–13 months.

In January 2003, when he was 27 years old, the patient presented to our oncology ward with a 2-month history of general weakness, skin eruption, and night sweats. Priapism had occurred weeks earlier. The patient was first treated at Da-Lin Tzu-Chi Hospital, where laboratory examination revealed a white blood cell count of 56,920/mm3, with 32% neutrophils, 13% bands, 11% monocytes, 10% lymphocytes, 9% basophils, 8% metamyelocytes, 5% promyelocytes, 3% blast cells, 2% myelocytes, and 2% eosinophils. Hemoglobin was 10 g/dL and platelet count was 826,000/mm3. Leukocyte alkaline phosphatase score was 0, and lactate dehydrogenase level was 364 U/L. Bone marrow aspiration and biopsy showed marked hypercellularity. The Philadelphia (Ph) chromosome was present, and repeated bone marrow examination and chromosome analysis in our oncology ward confirmed the diagnosis of Ph-positive CML (Figure 2).

The patient had no family history of leukemia or thyroid disease, and he had not received external radiotherapy in the past. He was treated with hydroxyurea and prepared for allogeneic stem cell transplantation from his human leukocyte antigen (HLA)-identical sibling.

Discussion

Leukemia as a complication of 131I therapy is rare, but there is still concern about the possible carcinogenic effect of 131I. For example, in 1963, Haynie and Beierwaltes6 reported transient, dose-dependent, hematopoietic changes in patients receiving 131I for thyroid cancer, and in 1986, Van Nostrand et al7 found transient bone marrow suppression in post-131I therapy patients; some of these patients still had reduced baseline blood counts 1 year after 131I therapy.

The development of leukemia in patients treated for thyrotoxicosis or thyroid carcinoma has also been reported. Pochin,1 in reviewing 60,000 cases of thyrotoxicosis treated with 131I, found 17 cases of leukemia, of which 13 were acute, 1 was subacute, and 3 were chronic monocytic. The same author described 4 cases of acute leukemia in 175 patients treated with 131I for thyroid cancer, thus giving a leukemia incidence of 2.3%, compared with an expected incidence of 0.4% in the general population.2 Saenger et al3 reported a mildly increased risk of leukemia in hyperthyroid patients treated with radioiodine ($n = 22,000$) versus surgery ($n = 14,000$) ($p < 0.05$); these authors also suggested an association between hyperthyroidism
and leukemia, but of unknown mechanism. Indeed, the observed mortality from leukemia was 50% greater in hyperthyroid patients than in the US population as a whole.\(^3\)

Among the reported cases of leukemia as a complication of \(^{131}\)I therapy, CML has been documented much less frequently than acute leukemia. Apart from the present case, only 9 other cases of CML after \(^{131}\)I therapy for carcinoma of the thyroid have been reported (Table 1).\(^4\)–\(^8\)\(^\)–\(^14\) Most CML patients have a unique genetic translocation between chromosomes 9 and 22 in myeloid cells: the \(abl\) cellular oncogene is transferred from chromosome 9 to the \(bcr\) gene of chromosome 22. Ionizing radiation, including \(^{131}\)I, is known to be markedly effective in producing chromosome translocations, thus providing a probable mechanism for the development of leukemia after \(^{131}\)I treatment.

In the abovementioned 10 cases of CML, 2 patients had received high-voltage radiotherapy, which could have been an important factor in the development of secondary leukemia. The mean total dosage of \(^{131}\)I administered to the 10 CML patients was 329.6 mCi (range, 30–850 mCi), the age range was 27–76 years, and the latent period between \(^{131}\)I exposure and the detection of CML ranged from 10 months to 13 years. Among the 10 cases, our patient was the youngest and had the longest latent period. Six patients were diagnosed 4–7 years after their first radiation exposure; thus, the median latency period seemed shorter than that of 11 years (range, 2–25 years) in a group of Japanese atomic bomb survivors who developed CML.\(^15\)

Japanese atomic bomb survivors have an increased estimated risk of leukemia. Nonetheless, it is unclear whether radiation exposure over time results in a lower leukemia risk than acute exposure to the same total dosage of radiation.\(^15\) The Chernobyl accident led to the release of a considerable amount of various iodine radioisotopes, including \(^{131}\)I, into the atmosphere, and an increased incidence of thyroid cancer has been observed in children living in the heavily contaminated areas; so far, however, the incidence of other malignancies, including leukemia, does not seem to have changed markedly.\(^16\)

In 2 retrospective studies, Brincker et al\(^4\) and Edmonds and Smith\(^5\) found a significant increase in the incidence of leukemia after \(^{131}\)I therapy in 194 and 248 patients, respectively, with thyroid cancer. However, 3 large cohort studies in recent years are reassuring in that no instances of CML were observed.\(^17\)–\(^19\) a Swedish study in 1,955 2-year survivors who were followed-up for a mean of 17 years, and of whom 834 were treated with \(^{131}\)I, detected only an increased risk of chronic lymphocytic leukemia, a malignancy that has not so far been associated with radiation;\(^17\) an Italian study in 941 3-year survivors who were followed-up for a mean of 8 years, and of whom 730 were treated with \(^{131}\)I, found no cases of leukemia;\(^18\) and a French study in 1,771 2-year survivors with thyroid cancer who were followed-up for a mean of 10 years, and of whom 1,491 were treated with \(^{131}\)I, reported no secondary leukemias.\(^19\) These inconsistent results may stem from the different dosage ranges and follow-up periods employed in the various trials.

In conclusion, only a small proportion of patients with thyroid cancer treated with radioiodine have developed leukemia, and it is not absolutely certain that leukemia was caused directly by \(^{131}\)I. However, long-term follow-up in \(^{131}\)I-treated patients with thyroid cancer should be emphasized, and leukocytosis in such patients should raise the suspicion of CML.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Age (yr)/Gender</th>
<th>(^{131})I dose (mCi)</th>
<th>Time interval from first (^{131})I dose</th>
<th>External radiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozarda et al (1961)(^6)</td>
<td>75/F</td>
<td>347</td>
<td>4.7 yr</td>
<td>–</td>
</tr>
<tr>
<td>Brincker et al (1973)(^6)</td>
<td>76/F</td>
<td>600</td>
<td>10 mo</td>
<td>–</td>
</tr>
<tr>
<td>Bundi et al (1977)(^9)</td>
<td>55/M</td>
<td>850</td>
<td>11 yr</td>
<td>+</td>
</tr>
<tr>
<td>Torng et al (1984)(^10)</td>
<td>37/M</td>
<td>100</td>
<td>65 mo</td>
<td>–</td>
</tr>
<tr>
<td>Walgraewe et al (1991)(^11)</td>
<td>43/M</td>
<td>30</td>
<td>5 yr</td>
<td>–</td>
</tr>
<tr>
<td>Advani & Hege (1992)(^12)</td>
<td>Middle-aged/F</td>
<td>103</td>
<td>7 yr</td>
<td>–</td>
</tr>
<tr>
<td>Shimon et al (1995)(^13)</td>
<td>35/M</td>
<td>56</td>
<td>4 yr</td>
<td>–</td>
</tr>
<tr>
<td>Alfiar et al (1997)(^14)</td>
<td>57/F</td>
<td>410</td>
<td>6 yr</td>
<td>+</td>
</tr>
<tr>
<td>Wang et al (present case)</td>
<td>27/M</td>
<td>670</td>
<td>13 yr</td>
<td>–</td>
</tr>
</tbody>
</table>
References