Introduction

Hemangiomas are the most common benign tumor in infancy, affecting approximately 10% of infants. More than half of hemangiomas involve the head and neck. The prenatal diagnosis of hemangiomas can be challenging, and precise diagnosis may be controversial but is essential to ensure optimal peripartum management. We report a case of a giant nuchal hemangioma prenatally assessed and characterized by 3-dimensional (3D) and 4-dimensional (4D) ultrasonography, and which was confirmed by postnatal magnetic resonance imaging (MRI).

Case Report

A 27-year-old primigravida was referred to our hospital for prenatal care at 32 weeks of gestation because of a suspected fetal neck tumor. Fetal 2-dimensional (2D) ultrasonography showed a neck mass with mixed echogenicity, measuring 65 × 54 × 59 mm in size (Figure 1A). Color Doppler study revealed prominent hypervascularization in the tumor, with a resistance index of 0.52. No polyhydramnios, cardiomegaly, tricuspid regurgitation, hydropic changes, or other fetal abnormalities were visualized. 3D ultrasound with a Voluson 730 Expert system (GE Medical Systems, Kretztechnik, Zipf, Austria) equipped with 4–8 MHz motor-driven curvilinear probes demonstrated a lobulated subcutaneous mass over the fetal posterior neck (Figure 1B). The brain parenchyma and spine had no apparent abnormalities. Following counseling, the patient was re-evaluated on a weekly basis. At 36 weeks of gestation, follow-up 2D sonogram revealed that the mass had enlarged slightly. 4D (real-time 3D) ultrasound showed a lumpy and multiloculated appearance inside the mass (Figure 2). At the same time, the fetus was hemodynamically stable and non-stress testing was reassuring.

An elective Cesarean section was performed at 37 weeks of gestation. A male baby weighing 2,998 g was
born, with Apgar scores of 8 and 9 at 1 and 5 minutes, respectively. Neonatal examination showed that the lesion was non-pedunculated with a bluish-purple color. The lesion occupied an intact area of about 90×80 mm over the right posterior neck region. The infant’s hemoglobin and platelet counts were 12.5 g/dL and 172×10^3 cells/µL, respectively. There was no evidence of high-output heart failure, microangiopathic anemia, thrombocytopenia, or consumption coagulopathy after birth. Neonatal MRI, including contrast-enhanced magnetic resonance angiography, demonstrated a multiloculated hypervascular neck mass with multiple signal voids (i.e. high velocity flows) in the lesion supplied by an engorged occipital branch of the right external carotid artery (Figure 3). The findings were therefore consistent with a diagnosis of hemangioma. As there were no apparent complications (such as obstruction, ulceration, bleeding, infection, associated anomalies, or high-output heart failure), after a detailed discussion with his parents, the infant received monthly follow-up without medical or surgical intervention. The tumor began to regress in size when the infant was 7 months of age. The karyotype was 46,XY.

Figure 1. Sonograms at 32 weeks of gestation: (A) 2D ultrasound (axial view) shows a soft tissue mass (M) with mixed echogenicity emanating from the fetal posterior neck; (B) 3D ultrasound (sagittal view) reveals a lobulated subcutaneous mass (M) over the posterior neck without involvement of the spine (Sp) and brain tissues. H = head.

Figure 2. Four-dimensional ultrasound at 36 weeks of gestation demonstrates a subcutaneous mass (M) in the fetal posterior neck with a lumpy multiloculated appearance inside the mass. H = head.
Discussion

Hemangiomas, usually capillary and cavernous histologic types, can proliferate in utero and manifest as fully grown tumors at birth. They begin to regress during early infancy. In the majority of patients with uncomplicated hemangiomas, natural involution remains a viable treatment option. Surgical excision, cryosurgery, laser therapy, pharmacologic remedies, and strangulation of the feeder vessel are indicated for a subset of patients with complicated hemangioma. Recently, the implication of an association between readily identifiable fetal vascular masses in the first trimester of pregnancy and Down syndrome has been reported. The presence of sonolucent spaces in the mixed echogenic mass found on prenatal 2D ultrasound, together with the detection of pulsating Doppler flow signals, are reasonably suggestive of a fetal hemangioma. The diverse findings of echogenicity in the mass is frequently encountered and may be attributed to the vascular type, degenerative process, thrombosis formation, calcification, and endothelial cell proliferation. Therefore, it may be difficult to differentiate between hemangiomas and other soft tissue masses by conventional 2D ultrasound alone, and the absence of blood flow signals does not exclude such a diagnosis. In the case reported here, 3D and 4D ultrasound reconstruction of the internal structure of the mass showed a multiloculated and lumpy appearance that was not demonstrated on the conventional 2D ultrasound. This imaging finding was consistent with the appearance on gross section cutting of such a mass. To the best of our knowledge, this case represents a novel report in the literature that includes both 3D and 4D images used for the virtual reality rendition of a giant fetal neck hemangioma. Compared with 3D reconstruction, the usefulness of 4D sonography in prenatal diagnosis lies in being able to obtain a real-time image in a less labor-intensive manner. However, 3D and 4D images might be considered as complementary diagnostic tools in our present case, although the perinatal management of this condition probably could not be altered.

Furthermore, postnatal MRI in our case, including magnetic resonance angiography, showed not only multiple signal voids and the feeding vessel, but the hypervascular and multiloculated structure in the mass, specifically confirming the diagnosis of a hemangioma. Compared with postnatal magnetic resonance angiographic findings, the lumpy multiloculated appearance inside the mass shown on the prenatal 4D ultrasound is compatible with the large dilated vascular channels commonly found in hemangiomas.

A variety of the antenatal appearances of hemangiomas on 2D sonography have been reported. However, a precise prenatal diagnosis may be uncertain.

Figure 3. (A) Neonatal coronal T2-weighted magnetic resonance imaging shows a soft tissue mass (M) over the right posterior neck and occipital regions, and multiple foci of signal voids (arrowheads) confirm the presence of fast-moving vascular structures within the mass. H = head. (B) Contrast-enhanced magnetic resonance angiography (oblique coronal plane) in the arterial phase shows a hypervascular and multiloculated lesion with blood supply from an engorged occipital branch of the right external carotid artery (ECA). CCA = common carotid artery; Ht = heart; M = mass.
Although the superiority of 3D and 4D sonography over 2D ultrasound and color Doppler is unclear, 3D/4D ultrasound techniques could be considered as alternative diagnostic tools and provide a better spatial vision of the surface and anatomic boundary of fetal structures. They have the advantages of being able to provide accurate and inexpensive virtual reality images through more realistic interactions with the virtualized in utero condition.

References