Introduction

A thymoma is a neoplasm originating from the thymic epithelium and is the most common tumor of the anterior mediastinum. Approximately 40% of thymoma patients have clinically associated parathymic syndromes, with myasthenia gravis (MG) being the most common.\(^1\) The others, including pure red cell aplasia (PRCA), hypogammaglobulinemia (Good’s syndrome), autoimmune disorders and vasculitis, occur in about 5–10% of thymoma patients.\(^2\) PRCA is characterized by normocytic anemia, reticulocytopenia and severe erythroid hypoplasia in the bone marrow but normal myeloid and megakaryocytic cell lineages.\(^3\) Although PRCA occurs in only 5% of thymoma patients, thymoma can be found in 50% of PRCA patients.\(^1\) This indicates that PRCA is rarer than MG in thymoma patients, but the relationship between PRCA and thymoma is closer. Thymoma, combined with hypogammaglobulinemia, was first recognized by Dr Robert Good in 1954. This occurs in approximately 6–11% of thymoma patients and is characterized by low serum immunoglobulin levels, few B cells, abnormal CD4+/CD8+ T-cell ratios, and CD4 T-cell lymphopenia.\(^1,4\)

Case Report

A pale 46-year-old woman was referred to hematology for progressive palpitations, dizziness and shortness of breath for 5 months. The symptoms were exaggerated, especially during menstruation. She had also suffered from recurrent canker sores and common colds in the past years. Routine chest radiography disclosed a mass over the left anterior mediastinal area (Figure 1A). Chest computed tomography (CT) showed the mass to be...
Thymoma with both PRCA and hypogammaglobulinemia

7.0 × 4.5 × 8.4 cm in size (Figure 1B). Ultrasound-guided percutaneous fine needle biopsy was performed, and the pathologist confirmed a diagnosis of thymoma. Even with mild elevation of AChR-Ab (1.37 nmole/L; normal range, <0.5), neurologists ruled out MG due to negative clinical symptoms and signs. Blood tests revealed severe normocytic anemia with a red cell count of 2.17 × 10⁶/μL, hemoglobin of 5.0 g/dL and reticulocyte count of 0.09%, but normal white blood cell and platelet counts. Normal serum bilirubin, serum haptoglobin, and urine hemosiderin levels ruled out the possibility of hemolysis. Serum levels of vitamin B12, folic acid, ferritin and total iron binding capacity were all within normal limits. Thus, bone marrow biopsy was done, showing severe erythroid hypoplasia with normal myeloid and megakaryocytic cell lineages. PRCA was diagnosed (Figure 2).

Positive antinuclear (1:320) and anti-DS-DNA antibodies (55 IU/mL) were detected, but anti-Smith and anti-cardiolipin IgM antibodies were not found. All indicated an aberration in immunologic conditions. In addition, low IgG (675 mg/dL; normal range, 751–1,560), low IgA (41 mg/dL; normal range, 82–453) and low C3 (59 mg/dL; normal range, 79–152) were noted. These led to the suspicion of hypogammaglobulinemia. The woman was diagnosed with thymoma combined with both PRCA and hypogammaglobulinemia. Preoperatively, she was treated with intravenous dexamethasone 5 mg every 12 hours for 14 days, then with intravenous methylprednisolone 1,000 mg during the operation, and then with oral prednisolone 5 mg twice a day for 1 month after operation. Median sternotomy was done for extended thymectomy. This showed a yellow-white mass that measured 7.5 × 5.5 × 3.5 cm over the left lobe of the thymus (Figure 3A). Microscopically, the tumor invaded into but not through the fibrous capsule and was composed of spindle cells with foci rich in lymphocytes, compatible with thymoma WHO type AB, in Masaoka stage I (Figure 3B).

The patient’s hematologic readings are illustrated in Figure 4. Complete remission from PRCA was achieved and maintained for at least 3 years. Chest CT also demonstrated no tumor recurrence. Her perioperative immunologic changes are listed in Table 1. Her white cell count (1 year after operation) was 4,680 (1/μL), with lymphocyte percentage of 42%. The lymphocyte subpopulations were CD3 of 73%, CD4 of 30%, CD8 of 40%, and CD19 of 8%. The patient did not totally recover from hypogammaglobulinemia. Clinically, she has had no severe infection postoperatively till now. But the canker sores have recurred and continue to bother her.

Figure 1. (A) Chest radiography shows a huge mass lesion over the left anterior mediastinal area. (B) Chest computed tomography demonstrates a soft tissue mass measuring 7.0 × 4.5 × 8.4 cm with homogeneous enhancement in the left anterior mediastinum.

Figure 2. Bone marrow biopsy: there is severe erythroid hypoplasia associated with normal myeloid series (Wright’s stain, 1,000×).
Figure 3. (A) Gross appearance: a yellowish-white mass lesion about $7.5 \times 5.5 \times 3.5$ cm in size located over the left lobe of the thymus. (B) Microscopic picture shows a tumor in which foci have features of type A thymoma mixed with foci rich in lymphocytes (hematoxylin & eosin, $400\times$).

Figure 4. Perioperative changes in hematologic condition.

Table 1

<table>
<thead>
<tr>
<th>Hematological conditions</th>
<th>Preoperative</th>
<th>Postoperative</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14 d</td>
<td>14 d</td>
</tr>
<tr>
<td>Red cell count (M/μL)</td>
<td>2.17</td>
<td>3.58</td>
</tr>
<tr>
<td>Hemoglobin (g/dL)</td>
<td>5.0</td>
<td>10.7</td>
</tr>
<tr>
<td>Hematocrit (%)</td>
<td>15.7</td>
<td>32.6</td>
</tr>
<tr>
<td>Reticulocyte count (%)</td>
<td>0.09</td>
<td>2.74</td>
</tr>
<tr>
<td>PRPI (%)</td>
<td>0.10</td>
<td>13.23</td>
</tr>
</tbody>
</table>

PRPI = peripheral reticulocyte production index (normal range: 5–15‰) = (patient’s hematocrit (%) / 45) × reticulocyte count × (1 / correction shift factor of maturation time).
Discussion

PRCA, either congenital or acquired, is a disease that selectively disturbs erythropoiesis. Acquired PRCA is further divided into primary and secondary. Primary PRCA has no suspicious causative disease or drug, and sometimes shows autoantibodies to erythroblasts or erythropoietins, or is a disorder of lymphocytes relating to erythropoiesis. For example, there may be an increase in T-cell suppression that inhibits erythropoiesis. Secondary PRCA, however, has some suspicious causes, such as thymoma, malignant lymphoma, chronic leukemia, systemic lupus erythematosus (SLE), and Sjögren’s syndrome. Among them, thymoma is the most common. Thymoma might produce suppressor T-cells or serum thymic factor that inhibits erythroid differentiation, but the definite inhibitors have not yet been identified. The inhibitors may decay after extended thymectomy; its course can be reflected by peripheral reticulocyte production index (PRPI) increase (Figure 4). From 14 days before to 14 days after surgery, PRPI in our patient increased 132-fold, from 0.1‰ to 13.2‰. This implies an inhibitor drop in the circulation and adequate compensated erythropoiesis in the bone marrow. Further detection of inhibitors of erythropoietin or erythroid progenitor in the future is recommended.

Thymoma with hypogammaglobulinemia was first described by Dr Robert Good in 1954, and termed Good’s syndrome. It becomes obvious in the 4th or 5th decades of life, and most patients suffer from recurrent sinopulmonary, bacterial urinary tract and skin infections. Serum shows hypogammaglobulinemia, few B-cells, an abnormal CD4+/CD8+ ratio and CD4 cell lymphopenia. In our case, IgG and IgA were low, even after extended thymectomy (Table 1). Moreover, B and CD4+ T lymphocytes were few and accounted for 8% and 30% of total leukocytes, respectively. A reversed CD4+ over CD8+ T lymphocyte ratio of 0.75 was also noted. Good’s syndrome does not entirely improve after treatment.

According to Jeunet in 1965, 35% of Good’s syndrome patients also had pure red cell anemia. There are only a few reports discussing the coexistence of PRCA and hypogammaglobulinemia in thymic patients in the literature. The definite mechanism between thymoma, PRCA and hypogammaglobulinemia is still obscure.

The relationship between thymoma histologic type and PRCA is also not clear. Masaoka et al reported that 17 thymoma patients with PRCA were all of the spindle type, in contrast to the polygonal cell types in myasthenic thymomas. But Kuo and Shih doubted the findings because none of their 5 thymoma patients with PRCA were of the spindle type. This included 2 with type B1 thymoma, 2 with type B2 thymoma and 1 with type AB thymoma (new WHO classification). All 17 patients reported by Masaoka et al might be type A thymoma according to the histologic findings of spindle type thymoma. Our case was stage I type AB thymoma, characterized by foci having features of type A thymoma mixed with foci rich in lymphocytes. For thymoma patients with PRCA and hypogammaglobulinemia, typical histologic types have not yet been reported. In the 17 thymoma patients reported by Masaoka et al, 3 had hypogammaglobulinemia. They were all spindle cell thymomas (WHO, type A), different from our case. This discrepancy could be due to a lack of consensus in the histologic classification of thymoma and the low case number.

Treatments for thymoma patients with PRCA, hypogammaglobulinemia or both are also diverse. For thymoma patients, extended thymectomy is the best choice of treatment if the thymoma is resectable. For thymoma patients with PRCA, the complete PRCA remission rate after extended thymectomy is about 30%. But Kuo and Shih doubted the effects of surgery, because none of their patients improved after surgery. Adjuvant therapy using immunosuppressive agents might be necessary to achieve complete remission. One month of perioperative steroids plus extended thymectomy led to complete remission in our case. The surgical effects on hypogammaglobulinemia were varied. There are no studies on surgical resection or multimodal treatments in thymoma patients with hypogammaglobulinemia in the English literature.

Table 1. Perioperative changes in clinical manifestation and profile

<table>
<thead>
<tr>
<th>Clinical signs/antibody titers/immunoglobulin levels</th>
<th>Oral ulcer</th>
<th>Common cold</th>
<th>ANA</th>
<th>DS-DNA (IU/mL)</th>
<th>IgG (mg/dL)</th>
<th>IgA (mg/dL)</th>
<th>CD4 (%)</th>
<th>CD8 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preoperative</td>
<td>Yes</td>
<td>Yes</td>
<td>1:320</td>
<td>55</td>
<td>675</td>
<td>41</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Postoperative</td>
<td>Yes</td>
<td>No</td>
<td>1:160</td>
<td>Negative</td>
<td>608</td>
<td>8.99</td>
<td>30</td>
<td>40</td>
</tr>
</tbody>
</table>

J Chin Med Assoc • January 2009 • Vol 72 • No 1
Extended thymectomy plus intravenous immunoglobulin replacement might be a choice for treating thymoma and altering hypogammaglobulinemia to reduce infection.21

Few have discussed the relationships between PRCA, thymoma and hypogammaglobulinemia. Treatment modalities are still controversial. Based on our case and others, it is hypothesized that some kind of inhibitor in the thymoma or thymus itself might precipitate the pathogenesis of PRCA.9–11 Even after extended thymectomy, previously released inhibitors still circulate in the serum and need time to decay and be eliminated. Before average or range of time to decay, adjuvant steroid therapy might be necessary. Intravenous immunoglobulin replacement therapy is still controversial, except when there are serious signs of infection. Our experience suggests that both extended thymectomy and immunosuppressive therapy may play key roles in patients with thymoma who have both PRCA and hypogammaglobulinemia, but further understanding and improvement in the management of hypogammaglobulinemia are necessary.

References