Right postoperative pleural effusion and pulmonary embolism following laparoscopic gynecological surgery: A rare case report and PRISMA-driven systematic review

Wei-Ting Chaob,c, Ling-Yu Jiangb,c,d, Guan-You Chenb,c, Peng-Hui Wangb,c,d,e, Hua-Hsi Wub,c,d, Yi-Jen Chenb,c,d,*

bFaculty of Medicine, College of Medicine, Fu-Jen Catholic University, Taipei, Taiwan, ROC; cInstitute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan, ROC; dDepartment of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC; eDepartment of Medical Research, China Medical University Hospital, Taichung, Taiwan, ROC

1. INTRODUCTION

Pleural effusion and pulmonary embolism after laparoscopic surgery are rare. However, it might be a cause of postoperative mortality. Confirming the risk factor and etiology of postlaparoscopic pleural effusion and pulmonary embolism and determining appropriate management are important.

2. CASE REPORT

A 53-year-old menopausal woman was admitted to our hospital for bilateral ovarian cysts found during health checkup. Her gynecologic history was gravida 3, para 2, and artificial abortion 1. A transvaginal ultrasonographic examination revealed a left ovarian cyst about 36 mm, and left hydrosalpinx was suspected. It also revealed a right ovarian cyst about 36 mm, and right ovarian endometriosis was suspected. After discussion with the patient, laparoscopic bilateral salpingo-oophorectomy was scheduled. Preoperative chest x-ray film showed a significant costophrenic angle without pleural effusion (Fig. 1A). Bilateral lung markings were clear. During the operation, severe adhesion between the omentum and the anterior abdominal wall and adhesion between the bilateral adnexa and the colon were noted. Left hydrosalpinx with endometriosis, 4 cm, and left ovarian chocolate cyst, 3 cm, with a solid part was found. Right hydrosalpinx with endometriosis, 4 cm, was also noted (Fig. 2A, B). Laparoscopic adhesion lysis and bilateral salpingo-oophorectomy were carefully performed. An adhesion-reduction agent, Adept (4% icodextrin) 1500 mL, was used at the end of the surgical procedure. We washed the abdominal cavity with 750 mL of Adept, and the remaining amount was instilled into the abdominal cavity. A Jackson-Pratt drain was inserted. However, desaturation and tachypnea were noted on postoperative day 1. Auscultation showed decreased breath sound on the right side. Chest x-ray film showed right massive pleural effusion and lung atelectasis (Fig. 1B). Blood gas analysis revealed hypoxia, and laboratory data showed elevated D-dimer (15.12 μg/mL). Pulmonary embolism was highly suspected. Chest computed tomography (CT) findings of filling defect in the left segmental pulmonary arteries (Fig. 3A) and suspicious in the small branches of the right segmental pulmonary arteries (Fig. 3B) with main truck sparing were compatible with pulmonary embolism. It also showed air bubbles in the left lateral upper abdominal wall (Fig. 3C) and minimal free air in the anterior upper peritoneal cavity (Fig. 3D); hence, pneumoperitoneum was suspected. Right pleural pigtail insertion was performed and an anticoagulant medication, rivaroxaban 30 mg/day, was given. Albumin and Lasix were also given for 3 days. The total amount of pleural pigtail insertion was 1165 mL. Chest...
radiograph on postoperative day 4 revealed the absence of right pleural effusion, and oxygenation was improved (Fig. 1C). The patient’s recovery was uneventful, and the drain was removed on postoperative day 5.

A total of seven articles as illustrated in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram (Fig. 4) and 12 patients are included, and detailed information is summarized in Table.

3. DISCUSSION

The incidence of postoperative pulmonary complication after laparoscopic hysterectomy is as low as 0.9%; however, pleural effusion and pulmonary embolism might be fatal and are associated with significant mortality. We report published cases of postlaparoscopic pleural effusion and present a rare and recent case of postlaparoscopic pleural effusion and pulmonary embolism at our institution.

Laparoscopic surgery was performed for benign diseases in 10 cases and for malignant diseases (serous adenocarcinoma and endometrial carcinoma) in two cases. Preoperative evaluation including chest radiograph and electrocardiography of all cases showed no evidence of abnormality. Only four cases presented with intraperitoneal pressure of 15 mmHg during operation, and remaining cases were not applicable. The duration of operation ranged from 30 to 270 minutes. Three cases showed that Adept (4% icodextrin), ranging from 750 to 1500 mL, was left in the peritoneal cavity. In four cases, 1 to 6 L of normal saline was used for peritoneal lavage. All 12 cases showed symptoms such as dyspnea, desaturation, or right thoracic pain after operation, with the time of onset ranging from immediate to postoperative day 7. In one unusual case, the reason for the hydrothorax and ascites was bilateral ureter injury.

Chest radiograph and chest CT were used for diagnosis in nine and four cases, respectively. Chest tube insertion or thoracentesis was performed in nine cases. The amount of chest tube drainage ranged from 750 to 1500 mL. Postoperative pleural effusion in one unusual case resolved spontaneously, and one case was under conservative management, as advised by the pulmonologist.

Mechanism of postoperative pleural effusion was related to type of operation (eg, heart, liver, pancreas, and lung). The common factor could be atelectasis that the loss of volume of the atelectatic lung results in more negative pleural pressure and reabsorption of pleural fluid. The other common factor was related to the presence of abdominal fluid. It might lead to the development of pleural effusion by one of the two mechanisms. The fluid may flow from the abdominal cavity to the pleural cavity directly through pores in the diaphragm; or the purulent peritoneal exudate may irritate the diaphragm, resulting in an exudative pleural effusion.

Several factors have been advanced to explain postlaparoscopic pleural effusion, including the prolonged duration of the operation, the high amount of fluid in the abdominal cavity, the Trendelenburg position, and increased intraperitoneal pressure. Congenital or iatrogenic defects of the diaphragm with...
Fig. 3 Chest computed tomography (CT). A, showed filling defect in left segmental pulmonary arteries. B, Filling defect was also suspicious in small branches of right segmental pulmonary arteries with main truck sparing. It was compatible with pulmonary embolism. C, Air bubbles in left lateral upper abdominal wall was noted. D, Minimal free air in anterior upper peritoneal cavity and pneumoperitoneum was suspected.

Fig. 4 PRISMA flow diagram. PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses.
Table

Summary of published case of postoperative pleural effusion following laparoscopic surgery

<table>
<thead>
<tr>
<th>Author</th>
<th>Year of publication</th>
<th>Age, gender</th>
<th>Surgery</th>
<th>Intraperitoneal pressure</th>
<th>Operation time</th>
<th>Irrigation fluid balance (in/out)</th>
<th>Symptoms onset after operation</th>
<th>Image findings</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ronghe et al⁷</td>
<td>2009</td>
<td>38, female</td>
<td>Laparoscopic adhesion lysis and laser treatment of endometriosis</td>
<td>15 mmHg</td>
<td>N/A</td>
<td>4.5L/3 L</td>
<td>Right side diminished breath sounds at the end of surgery</td>
<td>Chest x-ray film showed white out of right side</td>
<td>Chest tube was inserted and the amount of pleural effusion was 1000 mL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>38, female</td>
<td>Laparoscopic adhesion lysis and laser treatment of endometriosis</td>
<td>15 mmHg</td>
<td>80 min</td>
<td>N/A but 1.5 L of ADEPT was left in the peritoneal cavity</td>
<td>Difficulty in breathing and right shoulder pain on the night of operation</td>
<td>Chest x-ray film showed left-sided basal effusion</td>
<td>Needle aspiration of pleural fluid was done</td>
</tr>
<tr>
<td></td>
<td></td>
<td>44, female</td>
<td>Laparoscopic adhesion lysis and laser treatment of endometriosis</td>
<td>N/A</td>
<td>30 min</td>
<td>N/A but 1.5 L of ADEPT was left in the peritoneal cavity</td>
<td>Desaturation on the next morning of operation</td>
<td>Chest x-ray film showed right side pleural effusion</td>
<td>Pleural effusion was resolved spontaneously</td>
</tr>
<tr>
<td>Kim et al²</td>
<td>2013</td>
<td>58, female</td>
<td>Laparoscopic surgery for ovary serous adenocarcinoma</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Desaturation after 40 min of operation</td>
<td>Chest x-ray film showed right side hemi-thorax</td>
<td>Chest tube was inserted and the amount of pleural effusion was 1500 mL</td>
</tr>
<tr>
<td>Peycru et al³</td>
<td>2010</td>
<td>21, male</td>
<td>Laparoscopic appendectomy</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Right thoracic pain on postoperative day 4</td>
<td>Chest CT showed right pleural effusion</td>
<td>Pleural percutaneous puncture was done</td>
</tr>
<tr>
<td></td>
<td></td>
<td>42, female</td>
<td>Laparoscopic appendectomy</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Right thoracic pain on postoperative day 7</td>
<td>Chest CT showed right pleural effusion</td>
<td>Pleural percutaneous puncture was done</td>
</tr>
<tr>
<td></td>
<td></td>
<td>67, female</td>
<td>Laparoscopic appendectomy</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Right loin pain on postoperative day 7</td>
<td>Chest CT showed right pleural effusion</td>
<td>Pleural percutaneous puncture was done</td>
</tr>
<tr>
<td>Kanno et al⁴</td>
<td>2001</td>
<td>38, female</td>
<td>Laparoscopic myomectomy</td>
<td>N/A</td>
<td>4.5 h</td>
<td>6L/5.3 L</td>
<td>Desaturation after 10 min of extubation</td>
<td>Chest x-ray film showed massive right side pleural effusion</td>
<td>Chest tube was inserted and the amount of pleural effusion was 850 mL</td>
</tr>
<tr>
<td>Paul et al⁵</td>
<td>2017</td>
<td>51, female</td>
<td>Laparoscopic bilateral salpingo-oophorectomy</td>
<td>15 mmHg</td>
<td>110 min</td>
<td>1L/0.5 L</td>
<td>Desaturation after 10 min of extubation</td>
<td>Chest x-ray film showed right hydro-pneumothorax and mild left displacement of the mediastinum.</td>
<td>Pulmonologist advised O₂ at 1 to 2L/min through the nasal cannula for 10 h</td>
</tr>
<tr>
<td>Ameer et al⁶</td>
<td>2013</td>
<td>30, female</td>
<td>Laparoscopic coagulation of endometrial implants with bilateral ureteric injury</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Abdominal distention and dyspnea were noted on postoperative day 3</td>
<td>Sonogram showed moderate ascites, and chest x-ray film showed massive right pleural effusion. Retrograde bulbo-uretero gram showed contrast leak from both ureters</td>
<td>Bilateral Double J stent was inserted and exploratory laparotomy was done</td>
</tr>
<tr>
<td>Sato et al⁷</td>
<td>2013</td>
<td>61, female</td>
<td>Robotic-assisted staging surgery</td>
<td>N/A</td>
<td>207 min</td>
<td>3L/N/A</td>
<td>Immediate postoperative brief atrial fibrillation was noted</td>
<td>Chest x-ray film showed large right pleural effusion</td>
<td>Chest tube was inserted and the amount of pleural effusion was 750 mL</td>
</tr>
<tr>
<td>Present case</td>
<td>2018</td>
<td>53, female</td>
<td>Laparoscopic bilateral salpingo-oophorectomy</td>
<td>15 mmHg</td>
<td>1h and 40 min</td>
<td>N/A but 750 mL of ADEPT was left in the peritoneal cavity</td>
<td>Desaturation and tachypnea were noted on postoperative day 1</td>
<td>Chest x-ray film showed right massive pleural effusion and Chest CT showed pulmonary embolism</td>
<td>Pigtail catheter was inserted and the amount of pleural effusion was 1165 mL</td>
</tr>
</tbody>
</table>
possible channels of communication between the peritoneal and pleural cavities, which might be regarded as porous diaphragm syndrome, allow fluids to reach the pleural space and are noted as possible causes. Kim et al. present the case that pseudo-Meigs syndrome might be associated with benign ovarian tumor and postoperative right hydrothorax.

Venous thromboembolism (VTE) is a major cause of mortality following operation. The significant risk factors for postoperative VTE are obesity, malignancy, a history of VTE, length of surgery >1 hour, and increasing age. According to 9th edition of the American College Chest Physicians (ACCP) guideline, optimal thrombo-prophylaxis in nonorthopedic surgical patients will consider the risks of VTE and bleeding complications. The society of gynecologic surgeons’ systematic review also developed clinical practice guidelines for VTE prophylaxis in women undergoing gynecologic surgery. However, VTE prophylaxis for laparoscopic gynecologic surgery is still unclear.

Barber et al. retrospectively analyzed a total of 44 167 patients who underwent hysterectomy for benign conditions, with the following operative methods: open, 12 733 patients (28.8%); laparoscopic, 22 559 patients (51.1%); and vaginal, 8875 patients (20.1%). The total of VTE among all patients who underwent hysterectomy was 154 cases. Seventy-three cases (0.2%) were under minimal invasive surgery, and 81 cases (0.6%) were under open surgery. Minimally invasive surgery had a significantly lower rate of postoperative VTE than open surgery (p < 0.0001). Barber et al. also defined the risk factors of postoperative VTE, including high body mass index, African American race, diabetes, dependent preoperative functional status, longer total operative time, and longer days from operation to discharge. According to this study, the beginning of thrombus formation cannot be determined, and there were no sufficient data on whether prophylaxis was helpful to these women.

According to Mahdi et al., the incidence of VTE within 30 days was low (0.7%) in patients who underwent minimal invasive surgery for gynecologic cancer. They also defined the risk factor of postoperative VTE, including disseminated cancer. However, no difference was found in the risk of VTE based on operative time, need for lymphadenectomy, age, and body mass index. The risk factors associated with VTE in patients undergoing surgery is difficult to determine. Mahdi et al. also showed that the 30-day mortality was significantly higher in patients who had VTE within 30 days. However, they did not show evidence to support pharmacologic thromboprophylaxis in patients undergoing minimal invasive surgery for gynecologic cancer. Freeman et al. reported in the cohort study that the VTE rate following minimally invasive surgery among women with endometrial cancer was 0.35%, with a pulmonary embolism rate of 0.2%. There were no mortalities due to VTE in this study. Mechanical (sequential compression devices and graduated compression stockings) and pharmacologic prophylaxes have been reported to reduce perioperative VTE after cancer surgery. This study showed that the VTE rate was not different among those who received pharmacologic prophylaxis compared with those who underwent mechanical prophylaxis (0.23% [2/865] vs 0.55% [3/548], respectively, p = 0.38). Mechanical prophylaxis is sufficient for women undergoing minimal invasive surgery.

ACKNOWLEDGMENTS

We thank the Medical Science & Technology Building of Taipei Veterans General Hospital for providing facilities.

REFERENCES